
Geometry and dynamics for hierarchical regular networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 335003

(http://iopscience.iop.org/1751-8121/41/33/335003)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/33
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 335003 (25pp) doi:10.1088/1751-8113/41/33/335003

Geometry and dynamics for hierarchical regular
networks

Stefan Boettcher1, Bruno Goncalves2 and Julian Azaret

Department of Physics, Emory University, Atlanta, GA 30322, USA

Received 20 May 2008
Published 17 July 2008
Online at stacks.iop.org/JPhysA/41/335003

Abstract
The recently introduced hierarchical regular networks HN3 and HN4 are
analyzed in detail. We use renormalization group arguments to show that
HN3, a 3-regular planar graph, has a diameter growing as

√
N with the system

size, and random walks on HN3 exhibit super-diffusion with an anomalous
exponent dw = 2− log2(φ) ≈ 1.306, where φ = (

√
5 + 1)/2 = 1.618 . . . is the

‘golden ratio.’ In contrast, HN4, a non-planar 4-regular graph, has a diameter
that grows slower than any power of N, yet, faster than any power of ln N .
In an annealed approximation we can show that diffusive transport on HN4
occurs ballistically (dw = 1). Walkers on both graphs possess a first-return
probability with a power law tail characterized by an exponent µ = 2 − 1/dw.
It is shown explicitly that recurrence properties on HN3 depend on the starting
site.

PACS number: 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Networks with a sufficiently intricate structure to exhibit not-trivial properties for statistical
models but sufficiently simple to reveal analytical insights are few and far between. Familiar
examples are random graphs [1, 2], the hierarchical lattices [3] originating in the Migdal–
Kadanoff bond-moving scheme [4, 5], fractal lattices [6] or scale-free networks [7–9].
Scale-free networks and random graphs can elucidate mean-field properties only, whereas
hierarchical lattices often provide excellent results for complex statistical models in low
dimensions [10] but do not possess a mean-field limit. Fractal lattices provide tantalizing access
to dynamical systems in non-integer dimensions but cannot be tuned across dimensions. From
the perspective of statistical physics, it could be desirable to have a network that combines

1 http://www.physics.emory.edu/faculty/boettcher/.
2 http://www.bgoncalves.com/index.shtml.
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solvability for low-dimensional systems with mean-field properties in such a way that one
could interpolate between either extreme.

We have recently introduced a set of networks that overlay a lattice backbone with regular
long-range links [11, 12], similar to small-world networks [13] but hierarchical and without
randomness. These networks have a recursive construction but retain a fixed, regular degree.
The hierarchical sequence of long-distance links occur in a pattern reminiscent of the tower-
of-Hanoi sequence [12]. Therefore, we have dubbed them ‘Hanoi-Networks’ and abbreviated
them as HN3 and HN4, since one is 3-regular and the other 4-regular. While almost identical,
both types of networks lead to very distinct behaviors, as revealed by our studies here. Future
work will focus on detailed studies of Ising models on these networks. In [11], we have shown
already that spin models on HN4 have the desired properties mentioned above. Here, we
analyze in great detail diffusive transport on these networks, for which especially HN3 proves
to possess a rich behavior.

The paper is structured as follows. In the following section, we introduce the networks and
discuss various key design aspects. In section 3, we explore geometric aspects of the networks
such as their diameter. Section 4 contains our analysis of random walks on both networks,
starting with a review of the dynamic renormalization group in the context of a simple one-
dimensional random walk which facilitates an efficient discussion of the equivalent but far more
involved calculation for HN3. Unfortunately, the same approach does not seem to apply to
HN4, so we conclude the section with a derivation of a moment-generating equation in Fourier
space for walks on HN4 directly from the master equation and an annealed approximation.
We conclude this paper in section 5, indicating various future projects that can be developed
from the work presented here.

2. Network design

Both networks that we are discussing in this paper consist of a simple geometric backbone, a
one-dimensional line of N = 2k sites, either infinite (−2k � n � 2k, k → ∞), semi-infinite
(0 � n � 2k, k → ∞) or closed into a ring. Each site on the one-dimensional lattice backbone
is connected to its nearest neighbor. (In general, the following procedure also works with a
higher-dimensional lattice.)

To generate the small-world hierarchy in these graphs, consider parameterizing any integer
n (except for zero) uniquely in terms of two other integers (i, j), i � 0, via

n = 2i (2j + 1). (1)

Here, i denotes the level in the hierarchy whereas j labels consecutive sites within each
hierarchy. For instance, i = 0 refers to all odd integers, i = 1 to all integers once divisible
by 2 (i.e., 2, 6, 10, . . .) and so on. In these networks, aside from the backbone, each site is
also connected with (one or both) of its nearest neighbors within the hierarchy. For example,
we obtain the 3-regular network HN3 (best done on a semi-infinite line) by connecting first
all nearest neighbors along the backbone, but in addition also 1 to 3, 5 to 7, 9 to 11, etc, for
i = 0, next 2 to 6, 10 to 14, etc, for i = 1, and 4 to 12, 20 to 28, etc, for i = 2 and so on, as
depicted in figure 1. Correspondingly, HN4 is obtained in the same manner, but connecting
to both neighbors in the hierarchy, i.e., 1 to 3, 3 to 5, 5 to 7, etc, for i = 0, 2 to 6, 6 to
10, etc, for i = 1 and so forth. For this network it is clearly preferable to extend the line to
−∞ < n < ∞ and also connect −1 to 1, −2 to 2, etc, as well as all negative integers in the
above pattern, see figure 2. The site with index zero, not being covered by equation (1), is
clearly a special place, either on the boundary of the HN3 or in the center of the HN4. It is
easy to generalize these graphs, for instance, by putting the structure on a ring with periodic
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Figure 1. Depiction of HN3 on a semi-infinite line. The leftmost site here is n = 0, which requires
special treatment. The entire network can be made 3-regular with a self-loop at n = 0. Note that
HN3 is planar.

Figure 2. Depiction of HN4 on an infinite line. The center site is n = 0, which requires special
treatment. The entire network becomes 4-regular with a self-loop at n = 0. Note that HN4 is
non-planar.

boundary conditions, which may require special treatment of the highest level in the hierarchy
on finite rings.

Random walks on these networks have fascinating properties due to their fractal nature
and their long-range links as shown, for instance, in figure 3.

3. Network geometry

3.1. Distance measure on HN3

For HN3, it is simple to determine geometric properties, for instance, its diameter d, which
is the longest of the shortest paths between any two sites, to wit, on a finite graph of size
N = Nk = 2k for k → ∞. Clearly, d in this case would be the end-to-end distance between
sites n = 0 and n = N with the smallest number of hops. Using a sequence of networks for
k = 2, 4, 6, . . . , the diameter-path looks like a Koch curve, see figure 4. We can define the
path �k as a sequence of jumps reaching from one end of the N = 2k-long graph to the other

3
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Figure 3. Plot of the probability Pl,t of a random walker to reside at a site l at time t after starting at
the origin l = 0 obtained by numerical simulations on HN3. The scale of the vertical axis refers to
ln Pl,t to increase the visibility. Note the highly non-homogeneous evolution, which is tied to fractal
distance-dependence also apparent in figure 5 due to the hierarchy of long-range links. Those links
allow for walkers to appear suddenly at certain sites such as l = 3×2i = 6, 12, 24, 48, 96, 192, . . .

long before ordinary diffusion along the backbone itself would provide for. Those onset-points for
the most rapidly progressing walker should follow an envelope function that is linear (‘ballistic’)
in a spacetime plot, as walkers diffuse ordinarily with hopping distance, d ∼ √

t , but by
equation (4), d ∼ √

l, hence, l ∼ t . Average walkers progress slower than ballistic, though,
but still faster than diffusion.

via

�0 = 1,

�2 = 1 − 2 − 1 = �0 − 2 − �0,

�4 = 1 − 2 − 1 − 8 − 1 − 2 − 1 = �2 − 8 − �2,
(2)

· · · ,
�k+2 = �k − 2k+1 − �k,

with an obvious notation of using ‘−’ to string together a sequence of ever more complex
moves. (While somewhat redundant here, introducing this notation will prove useful for HN4
below.) Hence, the length dk of each path �k is given by

dk+2 = 2dk + 1 for Nk+2 = 4Nk, (3)

thus,

d ∼
√

N. (4)

This property is demonstrated also in figure 5. In some ways, this property is reminiscent
of a square lattice consisting of N lattice sites. The diameter (=diagonal) of this square is
also ∼√

N . In this sense, presuming that each link corresponds to a unit distance, HN3 is a
fractal lattice of dimension 2, i.e., filling the plane. As shown in figure 6, we also find that
the number of sites that can be reached from a given site grows quadratically with the number
of jumps allowed. It should be noted, though, that we are employing the one-dimensional

4
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Figure 4. Sequence of shortest end-to-end paths (=diameter, thick black lines) for HN3 of size
N = 2k, k = 2, 4, 8. (Note that every second step in the hierarchical development has been
omitted. At level k = 3, 5, . . . the shortest path is the same as at k − 1, except each linear segment
counts for two steps.) Whenever the system size N increases by a factor of 4, the diameter d
increases by a factor of ∼2, leading to equation (4).

lattice backbone as our metric to measure distances in the random walks in section 4, which
enforces a trivial fractal dimension of df = 1. We conclude that, while interesting in its own
right, HN3 is far from any mean-field behavior for which we would expect typical distances
to depend only on (some power of) ln N .

3.2. Distance measure on HN4

The situation is more interesting for the HN4. Using the notation from equation (2), we have

�0 = 1,

�1 = 1 − 1,

�2 = 1 − 2 − 1 = �0 − 2 − �0,

�3 = 1 − 2 − 2 − 2 − 1 = �0 − 3 × 2 − �0,

�4 = 1 − 1 − 4 − 4 − 4 − 1 − 1

= �1 − 3 × 4 − �1,

�5 = 1 − 2 − 1 − 8 − 8 − 8 − 1 − 2 − 1

= �2 − 3 × 8 − �2,

�6 = 1 − 2 − 1 − 7 × 8 − 1 − 2 − 1

= �2 − 7 × 8 − �2

(5)

5



J. Phys. A: Math. Theor. 41 (2008) 335003 S Boettcher et al

0.2 0.4 0.6 0.8 1
l/N

0.4

0.6

0.8

1.0

1.2

d/
l1/

2

N=6144

N=12288

Figure 5. Plot of the shortest path length between the origin of HN3 and the lth site on two
networks of extend N = 3 × 211 and N = 3 × 212. In both sets of data, we plot the path-distance
relative to the root of the separation between site l and the origin (l = 0) along the linear backbone.
Then, all rescaled distances fluctuate around a constant mean. Those fluctuations are very fractal,
their self-similarity becoming apparent when super-imposing the data for both sizes N on a relative
distance scale with l/N .
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Figure 6. Plot of the number of sites (or ‘neighborhood’) Sd that can be reached from a given site
within less than d jumps on HN3. Averaged over many starting sites, Sd/d2 slowly converges to
a constant, demonstrating that Sd grows quadratically with d. Note that some features due to the
hierarchical structure remain even after averaging over sites, such as the peaks at d = 192, 384,
768, etc.

and so on. Due to degeneracies at each level (which we have not listed), one has to proceed to
many more levels in the hierarchy to discern the relevant pattern. In fact, any pattern evolves
for an increasing number of levels before it gets taken over by a new one, with two patterns
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creating degeneracies at the crossover. Finally, we get (setting the degeneracies aside)

�k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�k−2 − 1 × 2k−1 − �k−2, (k = 2),

�k−3 − 3 × 2k−2 − �k−3, (2 < k � 5),

�k−4 − 7 × 2k−3 − �k−4, (5 < k � 9),

�k−5 − 15 × 2k−4 − �k−5, (9 < k � 14),

. . .

(6)

and so on.
Note that the paths here do not search out the longest possible jump, as in equation (2).

Instead, the paths reach quickly to some intermediate level and follow consecutive jumps at that
level before trailing off in the end. As we will see repeatedly, this is the main distinguishing
feature discriminating between HN3 and HN4: once a level is reached in the HN4, the entire
graph can be traversed at that level, while in the HN3 any transport must climb down to lower
levels (or merely jump back on that level), see figures 1–2.

Corresponding to equation (6), we obtain for the end-to-end shortest paths (=diameters
dk)

dk =

⎧⎪⎪⎨
⎪⎪⎩

2d0 + 1, (k = 2),

2dk−3 + 3, (2 < k � 5),

2dk−4 + 7, (5 < k � 9),

. . . ,

(7)

which we can generalize into a single statement introducing a ‘generation’ index g � 2,

d
g

k = 2d
g−1
k−g + (2g−1 − 1), (lg−1 < k � lg), (8)

defining l1 = 1, where in general

lg = lg−1 + g, l2 = 2, (9)

demarcates the crossover point between the generations, see figure 7. Equation (9) easily
yields

lg = 1
2g(g + 1) − 1 (g � 2). (10)

To obtain the asymptotic behavior for dk , instead of solving equation (8) for all k, we note that
exactly on the crossover points k = lg (i.e., k − g = lg−1) we have

d
g

lg
= 2d

g−1
lg−1

+ (2g−1 − 1). (11)

Defining eg = 2gd
g

lg
, we get

eg = eg−1 + 1
2 − 2−g, (12)

which is easily summed up to give

d
g

lg
= (g − 1)2g−1 + 1. (13)

Remembering that k = lg and, from equation (10), that g ∼ √
2lg ∼ √

2k ∼ √
log2 N2, we

finally get

dk ∼ 1
2

√
log2 N22

√
log2 N2

(N → ∞) (14)

for the diameter of the HN4. As we would expect that the diameter (or rather, the average of
shortest paths) in a small-world graph should behave as d ∼ log N , it is instructive to rewrite

7
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Figure 7. Plot of the shortest end-to-end path length for HN4 networks of increasing backbone
sizes N = 2k , obtained by simulation. Note the piecewise-linear shape of the graph, which is
reflected in equation (7), for example. In turn, equation (11) concerns only the ‘bends’ between
each consecutive linear segment g.
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Figure 8. Plot of the system-size dependence of the exponent α = α(N) defined in equation (15).
The solid curve is the exact value based on equation (13), and the dashed curve is the asymptotic
approximation also given in equation (15). This approximation is always an upper bound. Note
that α(N) barely varies within a factor of 2 over 50 orders of magnitude.

equation (14) as

dk ∼ (log2 N)α with α ∼
√

2 log2 N

log2 log2 N
+

1

2
. (15)

Technically, of course, α diverges with N and the diameter grows faster than any power of
log2 N but less than any however-small power of N, unlike equation (4). In reality, though,
α varies only very slowly with N, ranging merely from α ≈ 1.5 to 3 over 50 decades, see
figure 8.
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4. Random walks

In the following we will study random walks on HN3 and HN4. For simplicity, we have
focused in our simulations only on two elementary observables, the mean displacement with
time, 〈|l|〉 ∼ t1/dw , and the first-return time distribution Q(�t) ∼ �t−µ. All walks are
controlled by one parameter, p, which determines the probability of a walker to step off the
lattice into the direction of a long-range jump. In particular, on HN3 a walker steps off
the lattice with probability p and jumps either to the left or right neighbor with probability
(1 − p)/2, whereas on HN4 long-range jumps to either the left or right occur with probability
p/2 instead. In both cases, we should return to a simple one-dimensional nearest-neighbor
walk for p → 0, where dw = 2 and µ = 3/2, although we would expect that limit to be
singular. Here, we only consider uniform values of p, independent of the sites (or level of
hierarchy). With a bit more algebra, the following considerations could be extended to values
that for each site depend on the level of hierarchy, p = p(i), for instance.

4.1. Renormalization group for random walks

Here, we analyze the spatio-temporal rescaling of simple random walks with nearest-neighbor
jumps along the available links using the renormalization group. First, we review the method
using as a simple example the well-known one-dimensional walk. Walks on such a graph
obey simple diffusion, dw = 2, which implies that each rescaling of space entails a rescaling
of time according to

N → N ′ = 2N T → T ′ = 2dwT = 4T . (16)

This is synonymous with the asymptotic form with the mean-square displacement

〈|l|〉 ∼ t1/dw , (17)

which defines the anomalous dimension of the walk in terms of the exponent dw. While the
result for the one-dimensional walk can be easily obtained with much simpler means, it serves
as a pedagogical example of calculating first-passage and first-return times using RG on more
complex structures. Later on, reference to this presentation will allow us to avoid excessive
algebra.

4.1.1. RG for the 1D random walk. As a pedagogical example, we present here the
theory as it will be applied in section 4.1.2. We consider a biased random walk on a finite
one-dimensional line. The master equations for such a random walk on a lattice of length
N = 2K+1 with reflecting boundaries are given by

P0,t+1 = pP1,t ,

P1,t+1 = P0,t + pP2,t ,

Pl,t+1 = (1 − p)Pl−1,t + pPl+1,t (2 � l � N − 2), (18)

PN−1,t+1 = (1 − p)PN−2,t + PN,t ,

PN,t+1 = (1 − p)PN−1,t ,

where Pl,t denotes the probability of a walker to be at site l at time t, p is the probability
expressing the biasing for left or right hops. Since we want to start the walks at time t = 0 at
the origin l = 0, these equations have the initial condition

Pl,0 = δl,0. (19)

9
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To facilitate renormalization of this non-equilibrium process, we introduce a generating
function

P̃l(z) =
∞∑
t=0

Pl,t z
t (20)

for all 0 � l � N . Incorporating the initial condition in equation (19), equations (18)
transform into

P̃0 = aP̃1 + 1,

P̃1 = cP̃0 + aP̃2,

P̃l = bP̃l−1 + aP̃l+1 (2 � l � N − 2), (21)

P̃N−1 = bP̃N−2 + dP̃N ,

P̃N = bP̃N−1,

where we have inserted generalized ‘hopping rates’ in preparation for the RG. Initially, at the
k = 0th RG step, it is

a(0) = pz, b(0) = (1 − p)z, c(0) = z, d(0) = z, (22)

which provides a sufficient number of renormalizable parameters that are potentially required
to consider special sites at both boundaries.

A single step of applying the RG consists of solving equations (21) for P̃l with odd values
of l (which is trivial here, as they are already expressed explicitly in terms of even ones) and
eliminating them from the equations for the even l. After that elimination, we can rewrite the
equations for even l as

P̃0 = a2

1 − ac
P̃2 +

1

1 − ac
,

P̃2 = bc

1 − 2ab
P̃0 +

a2

1 − 2ab
P̃4,

P̃2l = b2

1 − 2ab
P̃2l−2 +

a2

1 − 2ab
P̃2l+2

(
2 � l � N

2
− 2

)
, (23)

P̃N−2 = b2

1 − 2ab
P̃N−4 +

ad

1 − 2ab
P̃N ,

P̃N = b2

1 − bd
P̃N−2.

Comparing these equations with equations (21) allows us to extract the RG recursion equations.
(Note that superscripts referring the kth RG step have been suppressed thus far in equations (21)
and (23).)

Before we analyze the first return time at the boundary specifically, we can use the
equation for bulk sites l in (23) to extract already the diffusion exponent dw. A comparison of
the respective coefficients in equations (21) and (23) yields

a(k+1) = (a(k))2

1 − 2a(k)b(k)
, b(k+1) = (b(k))2

1 − 2a(k)b(k)
. (24)

These recursions converge for k → ∞ toward fixed points (a∗, b∗) that characterize the
dynamics in the infinite-time limit (which corresponds to the limit of z → 1−). The trivial
fixed point a∗ = b∗ = 0 is unphysical, as it cannot be reached from the initial conditions in
(22) for any choice of p (and z = 1). The physical fixed points are (a∗, b∗) = (1, 0), which is
reached for any bias p > 1

2 , or (a∗, b∗) = (0, 1), reached for p < 1
2 ; finally, (a∗, b∗) = (

1
2 , 1

2

)
10
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can only be reached by entirely unbiased walks for p = 1
2 . To explore the behavior for large

but finite times, we expand the RG recursions in (24) to first order in ε = 1 − z by writing for
y ∈ {a, b},

y(k) ∼ y∗ + y
(k)
1 ε + · · · . (25)

Inserting the Ansatz in equation (25) into the recursions in equations (24), we obtain near the
fixed point with a∗ = b∗ = 1

2 ,

a
(k+1)
1 = 3a

(k)
1 + b

(k)
1 , b

(k+1)
1 = a

(k)
1 + 3b

(k)
1 , (26)

with the result that

a
(k)
1 = b

(k)
1 ∝ 4k.

This implies that as space rescales by a factor of 2 (i.e., eliminating all odd-index sites), time
rescales by a factor of 4, as indicated in equation (16) for an unbiased random walk, leading
to dw = 2. The same analysis for either of the biased fixed points yields that, for example,
a(k) ≡ 0 beyond any power of ε and, with the Ansatz b(k) ∼ 1 + b

(k)
1 ε in equations (24),

b
(k)
1 ∝ 2k . Following the interpretation in equation (16), this would imply dw = 1 and we find

the familiar result that with the slightest bias, i.e., p < 1
2 or p > 1

2 , the motion at large length
and time scales is dominated by the constant-velocity drift upon reaching the bulk.

In this scenario of a bias, average first-return times are clearly system-size independent
constants: a walker with a bias toward the origin

(
p > 1

2

)
will drift back recurrently after

only small excursions; a walker with a bias away from the origin
(
p < 1

2

)
returns at most a

finite number of times in short order until the drift eventually carries it away without further
recurrence. In the following, we therefore focus exclusively on the unbiased case p = 1

2 .
Then, we can equate a = b at every step, to get from equation (24),

a(k+1) = (a(k))2

1 − 2(a(k))2
. (27)

To derive the return-time behavior, we have to examine equations (23) more closely.
Comparing coefficients also in the boundary terms lead to

c(k+1) = a(k)c(k)

1 − 2(a(k))2
, d(k+1) = a(k)d(k)

1 − 2(a(k))2
. (28)

For large k, both c(k) and d(k) are entrained with a(k), and we obtain a consistent and closed set
of relations for all coefficients in equations (21) and (23) by identifying c = d = 2a. Further
renormalizing

P̃
(k+1)
l = [1 − 2(a(k))2]P̃ (k)

2l (29)

ensures invariance of the constant term at the lower boundary that originated from the unit
initial condition in equation (19).

After k = K RG steps, the system has reduced to

P̃
(K)
0 = a(K)P̃

(K)
1 + 1,

P̃
(K)
1 = 2a(K)P̃

(K)
0 + 2a(K)P̃

(K)
2 , (30)

P̃
(K)
2 = a(K)P̃

(K)
1 ,

which yields

P̃
(K)
0 = 1 − 2(a(K))2

1 − 4(a(K))2
. (31)

11
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Using equation (29) in turn obtains

P̃
(0)
0 = P̃

(K)
0∏K−1

k=0 [1 − 2(a(k))2]

= 1 − 2(a(K))2

1 − 4(a(K))2

K−1∏
k=0

1

[1 − 2(a(k))2]
. (32)

It is a well-known fact that the generating functions for being at the origin, P̃
(0)
0 , and for the

first-return probability to the same site, Q̃0, satisfy the following simple relation [14]:

Q̃l=0 = 1 − 1

P̃
(0)
l=0

. (33)

Note that a recurrent walk (with Q̃0 = 1) requires that P̃
(0)
0 diverges at long times (i.e.,

z → 1−). In our one-dimensional walk here, it is a(K) → a∗ = 1
2 , on behalf of which the

denominator of P̃
(0)
0 in equation (32) has a zero, making the walk recurrent. In more detail, it

is

Q̃0 = 1 − 1 − 4(a(K))2

1 − 2(a(K))2

K−1∏
k=0

[1 − 2(a(k))2]. (34)

We intend to extract the exponent µ for the first-return probability distribution, which on
a finite but large system of size N → ∞ behaves as

Q0(t) ∼ t−µ e−t/τN (t → ∞), (35)

where τN is a cut-off time scale that diverges in some form with N. As the physics of the
return probabilities at any finite time should not change if the system size becomes infinite
independently, it must be µ > 1 for Q0(t) to remain normalizable. Based on that observation
[14], we need to calculate the first two moments of Q0(t), corresponding to an expansion of
Q̃0(z) to second order in ε = 1 − z, to extract µ. Since µ > 1, the normalization integral

N ∼
∫ ∞

dt t−µ e−t/τN ∼ O(1) (36)

is dominated by its behavior for small t, which is irrelevant in detail except for the fact that it
makes the integral become a constant independent of τN . If we further assume that µ < 2,
then for all m � 1, the integrals for those mth moments do diverge with τN ,

〈tm〉N ∼ 1

N

∫ ∞

0
dt tm−µ e−t/τN ∼ τ

m+1−µ

N . (37)

From the ratio of 〈t〉N and 〈t2〉N , we then obtain

µ = lim
N→∞

2 +
1

1 − 〈t2〉N
〈t〉N

. (38)

Luckily, due to the leading zero in 1 − 4(a(K))2, any other factor in equation (34) only
needs to be expanded to first order in ε. Extending the ansatz in equation (25) for a(k) to
second order, we obtain here

a(K) ∼ 1

2
− 1

2
× 4Kε + 5 × 16Kε2 + · · · ,

1 − 4(a(K))2 ∼ 8 × 4Kε + 116 × 16Kε2 + · · · ,
1 − 2(a(K))2 ∼ 1

2
+ 4 × 4Kε + · · · ,

12
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K−1∏
k=0

[1 − 2(a(k))2] ∼
K−1∏
k=0

[
1

2
+ 4 × 4kε + · · ·

]
,

∼ 2−K

[
1 + 8ε

K−1∑
k=0

4k + · · ·
]

,

∼ 2−K +
8

3
2Kε + · · · .

Inserting these expressions into equation (34), we get

Q̃0 ∼ 1 − 16 × 2Kε + 952
3 × 8Kε2 + · · · . (39)

The moments of Q0(t) are obtained via derivatives of Q̃0(z), i.e.,

〈tm〉 =
[
z

d

dz

]m

Q̃0(z)|z=1. (40)

Applied to equation (39), we calculate for the dominant asymptotics of the moments,

〈t〉K ∼ 2K ∼ N, 〈t2〉K ∼ 8K ∼ N3,

which from equation (38) leads to the familiar first-return exponent of a one-dimensional walk,

µ = 3
2 . (41)

4.1.2. RG for the random walk on HN3. We follow the discussion for one-dimensional
walkers above to model diffusion on HN3. The lesson of the previous section is that we only
need to consider the bulk equations to extract the diffusion exponent dw, and supplement with
the calculation on the final system at the end of the k = Kth step of the RG to obtain the
first-return exponent for a system of size N = 2K+1. We can section the line into segments
centered around sites l with i = 1 in equation (1), i.e., n = 2(2j + 1). Such a site l = n is
surrounded by two sites of odd index, which are mutually linked. Furthermore, n is linked by
a long-distance jump to a site also of type i = 1 at l = n ± 4 in a neighboring segment, where
the direction does not matter here. The sites l = n ± 2, which are shared at the boundary
between adjacent segments also have even index, but their value of i � 2 is undetermined and
irrelevant for the immediate RG step, as they have a long-distance jump to some sites l = m±
at least eight sites away.

In each segment in the bulk, the master equation reads

Pn+2,t+1 = 1 − p

2
[Pn+3,t + Pn+1,t ] + pPm+,t ,

Pn+1,t+1 = 1 − p

2
[Pn+2,t + Pn,t ] + pPn−1,t ,

Pn,t+1 = 1 − p

2
[Pn+1,t + Pn−1,t ] + pPn±4,t , (42)

Pn−1,t+1 = 1 − p

2
[Pn,t + Pn−2,t ] + pPn+1,t ,

Pn−2,t+1 = 1 − p

2
[Pn−1,t + Pn−3,t ] + pPm−,t .

Here, p is the (uniform) probability for a walker to take a long-range jump, whereas (1 −p)/2
is the probability to jump either left or right toward a nearest-neighbor site along the backbone.
Without restriction of generality, let us assume that we happened to let all walks start from
a site within this segment. Note that, unlike for the 1D-walk above, there are three distinct

13
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Figure 9. Depiction of the (exact) RG step for random walks on HN3. Hopping rates from one site
to another along a link are labeled at the originating site. The RG step consists of tracing out odd-
labeled variables P̃n±1 in the top graph and expressing the renormalized rates (a′, b′, c′, p′

1, p
′
2) on

the bottom in terms of the ones (a, b, c, p1, p2) from the top. The node P̃n, bridged by a (dotted)
link between P̃n−1 and P̃n+1, is special as it must have n = 2(2j + 1) and is to be decimated at the
following RG step, justifying the designation of p′

1. Note that the original graph in figure 1 does
not have the green, dashed links with hopping rates (c, c′), which emerge during the RG recursion.

types of sites even in the bulk of this problem: Pn±2,t , Pn±1,t and Pn,t . In principle, one could
expect three distinct return-time behaviors as a result. We will demonstrate below that, indeed,
different sites possess differences in their return-time behavior, depending on their level in the
hierarchy, but all scale with the same exponent µ. Here, we choose to have the walk start on
site n − 2 within this segment,

Pl,0 = δl,n−2. (43)

Using the generating function in equation (20) on equations (42)–(43) yields

P̃n+2 = a[P̃n+3 + P̃n+1] + c[P̃n+4 + P̃n] + p2P̃m+ ,

P̃n+1 = b[P̃n+2 + P̃n] + p1P̃n−1,

P̃n = a[P̃n+1 + P̃n−1] + c[P̃n+2 + P̃n−2] + p2P̃n±4, (44)

P̃n−1 = b[P̃n + P̃n−2] + p1P̃n+1,

P̃n−2 = a[P̃n−1 + P̃n−3] + c[P̃n + P̃n−4] + p2P̃m− + 1,

where we have again absorbed the parameters p and z into general ‘hoping rates’, which are
initially

a(0) = b(0) = z

2
(1 − p), c(0) = 0, p

(0)
1 = p

(0)
2 = zp. (45)

Note that we have added new terms with a parameter c, which is zero initially. As figure 9
depicts, such links are not present in the original network HN3, but have to be taken into account
during the RG process. In all, a surprising number of parameters, five in all, is required even for
the most symmetric set of initial conditions to obtain a closed set of RG recursion equations.
Unlike for the one-dimensional walk in equation (21), the parameters a and b here do not
express a directional bias or drift along the backbone. Instead, they are necessary merely
to distinguish between hops out of (currently) odd and even sites, respectively, as shown in
figure 9.

14
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The RG update step consists of eliminating from these five equations those two that refer
to an odd index, n ± 1. As a first step, adding the two relations referring to the indices n ± 1,
we obtain

P̃n+1 + P̃n−1 = b

1 − p1
[P̃n+2 + 2P̃n + P̃n−2],

which allows us to eliminate any reference to odd sites n ± 1 from the middle relation in (44).
Furthermore, solving for P̃n±1 explicitly,

P̃n±1 = b

1 − p2
1

P̃n±2 +
bp1

1 − p2
1

P̃n∓2 +
b

1 − p1
P̃n,

and inserting into the relations for P̃n±2 in equation (44) result in

P̃n+2 = [ab + c(1 − p1)](1 + p1)

1 − p2
1 − 2ab

[P̃n+4 + P̃n] +
abp1

1 − p2
1 − 2ab

[P̃n+6 + P̃n−2]

+
p2

(
1 − p2

1

)
1 − p2

1 − 2ab
P̃m+ ,

P̃n = ab + c(1 − p1)

1 − p1 − 2ab
[P̃n+2 + P̃n−2] +

p2(1 − p1)

1 − p1 − 2ab
P̃n±4, (46)

P̃n−2 = [ab + c(1 − p1)](1 + p1)

1 − p2
1 − 2ab

[P̃n + P̃n−4] +
abp1

1 − p2
1 − 2ab

[P̃n+2 + P̃n−6]

+
p2

(
1 − p2

1

)
1 − p2

1 − 2ab
P̃m− +

1 − p2
1

1 − p2
1 − 2ab

.

Given that n is only once divisible by 2, either n − 2 or n + 2 must be divisible by 2 at most
twice, and we assume without restriction of generality that n + 2 satisfies this description,
whereas n − 2 is divisible by a higher power of 2. (This also selects the upper sign in the
index ‘n ± 4’). As in equation (29), we now add the proper superscript for the kth RG step
and obtain the renormalized generating functions at step k + 1 as

P̃
(k+1)
l = 1 − (

p
(k)
1

)2 − 2a(k)b(k)

1 − (
p

(k)
1

)2 P̃
(k)
2l . (47)

The proportionality factor in this relation arises from the necessity to preserve the unity of the
initial condition, as in equation (29). Note that we would have obtained the identical factor,
if we had chosen to start the walker from the central site n instead of n + 2. Starting at a site
like n ± 1, in turn, would have provided a different factor,

P̃
(k+1)
l = 1 − p

(k)
1 − 2a(k)b(k)

1 − p
(k)
1

P̃
(k)
2l , (48)

potentially leading to a distinct return-time behavior. Yet, asymptotically for large times and
distances both alternatives prove identical to sufficiently high order as to not affect the scaling
discussed below.

Proceeding with the RG step, the role of the central site in the new segments is then
specified via n+2

2 → n such that P̃
(k)
n−2 → P̃

(k+1)
n−2 , P̃ (k)

n → P̃
(k+1)
n−1 , P̃

(k)
n+2 → P̃ (k+1)

n , and
correspondingly for the functions on the left-hand side of equations (46), which now reads

P̃ (k+1)
n = a(k+1)

[
P̃

(k+1)
n+1 + P̃

(k+1)
n−1

]
+ c(k+1)

[
P̃

(k+1)
n+2 + P̃

(k+1)
n−2

]
+ p

(k+1)
2 P̃

(k+1)
n±4 ,

P̃
(k+1)
n−1 = b(k+1)

[
P̃ (k+1)

n + P̃
(k+1)
n−2

]
+ p

(k+1)
1 P̃

(k+1)
n+1 , (49)

P̃
(k+1)
n−2 = a(k+1)

[
P̃

(k+1)
n−1 + P̃

(k+1)
n−3

]
+ c(k+1)

[
P̃ (k+1)

n + P̃
(k+1)
n−4

]
+ p

(k+1)
2 P̃ (k+1)

m− + 1.
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These equations have exactly the desired form of the corresponding unrenormalized ones in
equations (44), necessitating renomalization recursions for the parameters of the form

a(k+1) =
[
a(k)b(k) + c(k)

(
1 − p

(k)
1

)](
1 + p

(k)
1

)
1 − (

p
(k)
1

)2 − 2a(k)b(k)
,

b(k+1) = a(k)b(k) + c(k)
(
1 − p

(k)
1

)
1 − p

(k)
1 − 2a(k)b(k)

,

c(k+1) = a(k)b(k)p
(k)
1

1 − (
p

(k)
1

)2 − 2a(k)b(k)
,

p
(k+1)
1 = p

(k)
2

(
1 − p

(k)
1

)
1 − p

(k)
1 − 2a(k)b(k)

,

p
(k+1)
2 = p

(k)
2

[
1 − (

p
(k)
1

)2]
1 − (

p
(k)
1

)2 − 2a(k)b(k)
.

(50)

The analysis of the fixed points for k → ∞ of equations (50) is surprisingly subtle. Of
course, we obtain a rather simple fixed point for the choice of p = 0, which eliminates all
long-range jumps. Then, c(k), p

(k)
1 and p

(k)
2 vanish for k = 0 in the initial conditions in (45)

and remain zero for all k > 0, according to equations (50). As a consequence, the distinction
between a(k) and b(k) disappears and both recursions reduce exactly to that for the unbiased
one-dimensional walk in equation (27) with a∗ = b∗ = 1

2 , leading to ordinary diffusion with
dw = 2 and µ = 3

2 , as discussed in section 4.1.1. Clearly, this fixed point is unstable with
respect to variations in p.

For any probability p > 0 inserted into equations (45), the recursions in (50) evolve
toward an apparent fixed point at a∗ = b∗ = c∗ = 0 and p∗

1 = p∗
2 = 1. But these

recursions are singular at such a fixed point, requiring a more detailed investigation. If
we choose an arbitrarily small δ > 0 and set p = 1 − δ, we find that for all k � 0 it is
a(k) ∼ b(k) ∼ c(k) = O(δ) and p

(k)
1 ∼ p

(k)
2 = 1 − O(δ). Hence, setting δ = 0 in the end

indeed validates this fixed point. Yet, the physics of this fixed point, corresponding to choosing
p = 1, is trivial and does not reflect the numerical observations: strictly for p = 1 there is no
transport at all along the backbone, and any walker is confined forever to jump back-and-forth
on the first long-range link it accesses, which would imply dw = ∞ in equation (17). For
any choice of 0 < p < 1, no matter how close to unity p gets, at long-enough times the
walker ‘escapes’ along the backbone sufficiently often to explore ever-longer jumps both, to
prevent confinement and to exceed ordinary diffusion. Thus, we must conclude that even this
confinement fixed point is unstable and there has to be a third fixed point, at least.

To find this fixed point, we have to move beyond looking at the stationary behavior
(k = ∞) of equations (50). Although equations (50) represent a five-dimensional parameter
space, there do not appear to be any further stationary points reachable from the initial
conditions in equations (45) aside from those two already discussed. As all flow appears
to converge toward the singular confinement fixed point, we make an ansatz inserted into
equations (50) for k � 1 that explores asymptotically the boundary layer [15] in its vicinity,

y(k) ∼ Ayα
−k (y ∈ {a, b, c, 1 − p1, 1 − p2}), (51)
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with the assumption that α > 1. Expanding equations (50) to leading order in α−k , we find an
over-determined system of equations

1

α
Aa = 1

α
Ab = A2

a

A1−p1

+ Ac,

1

α
Ac = A2

a

2A1−p1

,

1

α
A1−p1 = A1−p2 − 2A2

a

A1−p1

,

1

α
A1−p2 = A1−p1 − A2

a

A1−p1

.

(52)

Exercising the freedom to choose Aa = 1, we find

Ab = Aa = 1, Ac = 1

2φ
, A1−p1 = 2, A1−p2 = φ2, (53)

where

φ =
√

5 + 1

2
= 1.6180 . . . (54)

is the ‘golden ratio’ [16], and obtain the eigenvalue equation

α3(α + 3) = 8. (55)

It has a unique solution that satisfies the condition on the boundary layer, α > 1, namely

α = 2

φ
= 1.2361 . . . . (56)

Thus, we found another fixed point, lurking in the boundary layer of the confinement
fixed point but with very distinct physical properties from it. Each reduction of the system
size by a factor of 2 is accompanied by a rescaling of the hopping parameters by a factor of
α−1, bringing them closer to confinement, yet, leaving just enough room to escape and find
still longer jumps. In fact, at this point of the analysis it is not even obvious whether these ever
less frequent escapes from total confinement ultimately would result in sub-diffusive, normal
or super-diffusive behavior.

The leading-order ansatz in equation (51) merely provided the existence of a third
fixed point at infinite times. Extending the analysis to include finite-time corrections (i.e.,
ε = 1 − z � 1), we include first-order corrections,

y(k) ∼ Ayα
−k{1 + εByβ

k + · · ·}, (57)

expand the recursions in (50) in ε, and then also use the fact that α−k is small. Using the
leading-order constants Ay in equations (53), also the next-leading constants By are determined
self-consistently. We extract, again uniquely,

β = 2α = 4

φ
(58)

and find, choosing Ba = 1,

Bb = Ba = 1, Bc = 4

5
φ, B1−p1 = −6

5
, B1−p2 = − 8

5φ2
. (59)
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Figure 10. Plot of the results from simulations of the mean-square displacement of random walks
on HN3 displayed in figure 1. More than 107 walks were evolved up to tmax = 106 steps to measure
〈r2〉t . The data are extrapolated according to equation (17), such that the intercept on the vertical
axis determines dw asymptotically. The exact result from equation (61) is indicated by the arrow.

Accordingly, time rescales as

T → T ′ = 4

φ
T , (60)

and we obtain from equation (17) with T ∼ Ldw for the diffusion exponent for HN3,

dw = 2 − log2 φ = 1.305 76 . . . . (61)

Our simulations in figure 10 are in excellent agreement with this result for dw.
To extract the scaling behavior of the first-return distribution Q0(t) defined in equation

(35), we proceed similar to the discussion in section 4.1.1. Here, we will find that different
sites behave differently with respect to their return-time behavior, which is not surprising as
the hierarchy of long-range jumps restricts translational invariance along the backbone. As in
the discussion of first returns in section 4.1.1, we anticipate that we need an expansion of the
parameters to order ε2, i.e., we extend the ansatz in equation (57) even further. We find that it
is sufficient to use

y(k) ∼ Ayα
−k

{
1 + εByβ

k + ε2Cyβ
2k + · · · }

∼ Ay

{
α−k + εBy2k + ε2Cy(4α)k + · · · } (62)

with

Ca = Cb = 121

25

φ

16
, Cc = 121

25

φ2

16
,

C1−p1 = −121

25

φ

16
, C1−p2 = −121

25

1

16φ

(63)

where we have also dropped at each order in ε terms that grow less than the leading exponential
in k. For the coefficients Cy there is no freedom to choose, as they are a result of quadratic
terms of the previous order, εByβ

k; other terms with that freedom are subdominant.
As for equation (30), after k = K − 1 RG steps, the system has reduced to an elementary

graph consisting of a single segment like that one shown in figure 9 (left) with n = 2 but with
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p2 = 0. Now, all even sites (l = 0, 2, 4) are no longer connected to a long-range jump. (Jumps
of rate c do not count as long-range, since c → 0 for k → ∞, whereas p1 ∼ p2 → 1.) We
therefore consider two (extreme) possibilities: (1) returns to a starting point at the boundary
(l = 0, N) or central site (l = N/2) on the network and (2) returns to a site (l = N/4 or
l = 3N/4) with the longest-possible long-range jump on the original network.

First, we consider case (1) of starting at a boundary site, say, l = 0. It is easy to show that
the central site l = N/2 behaves identical to those on the boundary, and furthermore, even
making the boundary sites more accessible be using periodic boundary conditions does not
change the conclusion. We solve the system of equations

P̃0 = aP̃1 + cP̃2 + 1,

P̃1 = 2bP̃0 + bP̃2 + p1P̃3,

P̃2 = a[P̃1 + P̃3] + 2c[P̃0 + P̃4], (64)

P̃3 = bP̃2 + 2bP̃4 + p1P̃1,

P̃4 = aP̃3 + cP̃2,

where we have suppressed the superscript (K − 1) on the generating function and the
parameters alike. (As we have learned from the 1D-walk in equation (30), the hopping
parameters originating from the boundary sites l = 0 and l = 4 have to be doubled due to the
reflecting boundaries.) The solution for P̃0 of this system of equations yields

P̃0 = (1 − 2c2)
(
1 − p2

1

) − 2ab[1 + (1 + 2c)(1 + p1)] + 2a2b2

[(1 − p1)(1 − 2c) − 4ab](1 + 2c)(1 + p1 − 2ab)
. (65)

Note that both, numerator and denominator, decay asymptotically like ∼1−p2
1 near the stable

fixed point. Dividing out that behavior, both behave as 1 + y(K) with y(K) as in equation (62),
where y here stands for a mix of coefficient that results from multiplying out the terms in
numerator and denominator, respectively. Since we do not expect any spurious cancellations,
the ratio of these two expressions also results in the form 1+y(K). Hence, making superscripts
reappear, we find from equation (62)

1

P̃
(K−1)
0

∼ 1 + Bε2K + Cε2(4α)K + · · · , (66)

where we have also dropped the α−K -term in order ε0 and marked constants that are
unimportant for the scaling with K by calligraphy script. Solving the recursions in equation (47)
for l = 0 and inserting the solution into the relation for Q̃0 in equation (33), we find

Q̃0 = 1 − 1

P̃
(0)
0

= 1 − 1

P̃
(K−1)
0

K−2∏
k=0

[
1 − 2a(k)b(k)

1 − (
p

(k)
1

)2

]
. (67)

Ignoring at most a finite number of factors in the product (hence, missing an overall constant
A), we can expand the remaining factors in the product using the asymptotic expansion in
equation (62) for 1 � k � K − 2 → ∞,
K−2∏
k=0

[
1 − 2a(k)b(k)

1 − (
p

(k)
1

)2

]
∼ A

K−2∏
k�1

[1 − α−k + Dε2k + Eε2 (4α)k + · · ·],

∼ A
[

1 − Dε

K−2∑
k�1

2k + Eε2
K−2∑
k�1

(4α)k + · · ·
]

,

∼ A + Fε2K + Gε2(4α)K + · · · . (68)

19



J. Phys. A: Math. Theor. 41 (2008) 335003 S Boettcher et al

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

∆t

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P F
(∆

t)

∆t
-1.234

p=0.1

p=0.3

p=0.8

Figure 11. Plot of the probability Q(�t) of first returns to the origin after �t update steps on
a system of unlimited size. Data were collected for three different walks on HN3 with p = 0.1
(circles), p = 0.3 (squares) and p = 0.8 (diamonds). The data with the smallest and largest p
exhibit strong transient effects. The exact result in equation (70), µ = 1.234 . . . , is indicated by
the dashed line.

Note that 0 < A < 1, as each factor in the product must be between 1
2 and 1 for any choice

the probability p. Inserting equations (66) and (68) into equation (67), we obtain

Q̃0 ∼ (1 − A) + Hε2K + Iε2(4α)K + · · · . (69)

This result implies first that returns to sites like l = 0, N/2, N are not recurrent because
walks may escape forever with a finite probability A. Finally, an application of equation (40)
produces

〈t〉K ∼ 2K ∼ N, 〈t2〉K ∼ (4α)K ∼ N log2(4α),

hence, with equation (38) and α = 2/φ,

µ = 2 − 1

2 − log2(φ)
= 1.234 16 . . . . (70)

A relation of this form, µ = 2−1/dw, is commonly found for Lévy flights [17], and the result
is again borne out by our simulations, see figure 11.

Case (2), referring to walkers starting near the longest jump in the network, is represented
by the system

P̃0 = aP̃1 + cP̃2,

P̃1 = 2bP̃0 + bP̃2 + p1P̃3 + 1,

P̃2 = a[P̃1 + P̃3] + 2c[P̃0 + P̃4],
P̃3 = bP̃2 + 2bP̃4 + p1P̃1,

P̃4 = aP̃3 + cP̃2,

(71)

with the constant term from the initial conditions now near an odd site, say, l = 1. Solving
for the launch site of the walk, we find

P̃1 = 1 − 2c − ab(3 − 2c)

[(1 − p1)(1 − 2c) − 4ab](1 + p1 − 2ab)
. (72)
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Note that in this case only the denominator of P̃1 = P̃
(K−1)
1 decays with 1−p1 on approaching

the stable fixed point which will ensure that P̃
(0)
N/4 diverges, making this process recurrent on

behalf of equation (33). In contrast to equation (66), we find here

1

P̃
(K−1)
1

∼ (1 − p1)[1 + J ε2K + Kε2(4α)K + · · ·],

∼ A1−p1α
−K+1[1 + J ε2K + Kε2(4α)K + · · ·]

× [1 + εB1−p1(2α)K−1 + ε2C1−p1(2α)2K−2 + · · ·],
∼ (2α)α−K [1 + Lε(2α)K + Mε2(2α)2K + · · ·], (73)

where the last step is justified by the observation that the leading terms order by order in ε in
the first square bracket dominate over those in the second.

We have to solve the recursions in equation (48) for this case to obtain

P̃
(0)
N
4

= P̃
(K−1)
1

K−2∏
k=0

1 − p
(k)
1

1 − p
(k)
1 − 2a(k)b(k)

and from equation (33),

Q̃ N
4

= 1 − 1

P̃
(0)
N
4

,

= 1 − 1

P̃
(K−1)
1

K−2∏
k=0

[
1 − 2a(k)b(k)

1 − p
(k)
1

]
. (74)

The product in equation (74) behaves identically to that discussed above in equation (68)
and hence will not alter the overall form of the expansion when multiplying 1/P̃

(K−1)
1 in

equation (73). Then we get

Q̃ N
4

∼ 1 − (2α)α−K [1 + N ε(2α)K + Oε2(2α)2K + · · ·],
∼ 1 − (2α)α−K + Pε2K + Qε2(4α)K + · · · . (75)

This result is almost identical to that for returns to the origin above in equation (69), except
that sites at the longest jump in the system are recurrent, i.e., Q̃N/4 ≡ 1 for large systems
(K → ∞) and times (ε = 1 − z → 0). (Presumably recurrence will gradually degrade from
the strictly recurrent sites at the highest level in the hierarchy to those at the lowest.) Yet, the
scaling of return times in form of the exponent µ is described by equation (70) for all sites.

4.2. Generating function for random walks on HN4

Next, we consider a random walk on HN4. The ‘master equation’ [14] for the probability of
the walker to be at site n, as defined in equation (1), at time t is given by

Pn,t = 1 − p

2
[Pn−1,t−1 + Pn+1,t−1] +

p

2
[Pn−2i+1,t−1 + Pn+2i+1,t−1], (76)

where p is the probability to make a long-range jump. (Throughout, we considered p
uniform, independent of n or t). To make the connection between n and i explicit, we rewrite
equation (76) as

P2i (2j+1),t = 1 − p

2
[P2i (2j+1)−1,t−1 + P2i (2j+1)+1,t−1] +

p

2
[P2i (2j−1),t−1 + P2i (2j+3),t−1],

P0,t = 1 − p

2
[P−1,t−1 + P1,t−1] + pP0,t−1.

(77)
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Note that the case n = 0 is not covered by equation (1) and, hence, must be treated separately.
Here, we choose the site n = 0 to be the only one connected to itself such that HN4 is 4-regular
throughout, as depicted in figure 2.

It is straightforward to apply the generating function in equation (20) again, assuming,
for simplicity, the initial condition

Pn,0 = δn,0. (78)

We obtain

P̃ 2i (2j+1) = 1 − p

2
z[P̃2i (2j+1)−1 + P̃2i (2j+1)+1] +

p

2
z[P̃2i (2j−1) + P̃2i (2j+3)],

P̃0 − 1 = 1 − p

2
z[P̃−1 + P̃1,] + pzP̃0.

(79)

While the overall structure of this problem is even more symmetric than for HN3 in
section 4.1.2, a RG treatment does not seem possible in this case. Tracing out all odd
sites would immediately interconnect all other remaining sites. (The resulting infinite set of
coupled equations may have certain symmetry properties that would lend themselves for a
recursive treatment. We have not yet explored such a possibility.)

In contrast to an ordinary lattice, say, it is also not straightforward to solve this equation
by a Fourier transform such as

F(z, φ) =
∞∑

n=−∞
P̃n(x) enφI , (80)

defining I = √−1. Considering the 1 − p-terms, originating from nearest-neighbor jumps,
and the p-terms, originating from long-range jumps, in equations (79) separately provides
for regularly-spaced patterns, level by level in the hierarchy. But the mixing of nearest-
neighbor and long-range jumps destroys this regularity. Hence, we resort to transforming
equations (79) in each level i with a partial transform,

�i(z, φ) =
∞∑

j=−∞
P̃2i (2j+1)(z) exp{2i (2j + 1)φI }. (81)

Inserting equation (81) and application of the general theorem
∞∑
i=1

∞∑
j=−∞

f2i (2j+1)±1 =
∞∑

j=−∞
f2j+1 − f±1, (82)

which results because 2i (2j + 1) for i � 1 exactly runs over all even numbers �= 0 and over
all odd numbers for i = 0, yields for equations (79),

∞∑
i=1

�i[1 − pz cos(2i+1φ)] = (1 − p)z cos φ�0 + 1 − (1 − pz)P̃0,

�0[1 − pz cos(2φ)] = (1 − p)z cos φ

∞∑
i=1

�i + (1 − p)z cos φP̃0.

(83)

We can combine both relations to get

1 = [1 − zp − (1 − p)z cos φ]F + zp

∞∑
i=0

[1 − cos(2i+1φ)]�i, (84)
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using equations (80) and (81) to eliminate P̃0 via
∞∑
i=0

�i =
∞∑
i=0

∞∑
j=−∞

P̃2i (2j+1) exp{2i (2j + 1)φI },

=
∞∑

n=−∞
P̃ne

nφI − P̃0,

= F − P̃0. (85)

At this point, there does not seem to be any further progress possible on equation (84), due
to the term

∑
i �i cos(2i+1φ), which resembles a Weierstrass function [18]. At best, on could

try to extract information about the moments of the walk,

〈nk〉t =
∞∑

n=−∞
nkPn,t ,

via the moment-generating function

Mk(z) =
∞∑
t=0

〈nk〉t zt ,

= [−I∂φ]kF (z, φ)|φ=0. (86)

Note that the second moment M2(z) already would provide the exponent dw on behalf of the
definition in equation (17). (All odd moments vanish, of course, as equation (84) is even in
φ.) The zeroth moment, setting φ = 0 in equation (84), simply results in

M0(z) = 1

1 − z
,

which just demonstrates that everything is properly normalized, Nt = 〈n0〉t = ∑∞
n=−∞ Pn,t =

1, at all times t. But already the second moment would lead to terms containing
∑

i �i4i ,
which we cannot account for, even at φ = 0 and in the limit z → 1−.

Instead, we note that the long-time behavior is dominated by the long-range jumps, as
discussed for HN3 in section 4.1.2. To simplify matters, we set p = 1/2 here, although any
finite probability would lead to the same conclusions. We make an ‘annealed’ approximation,
i.e., we assume that we happen to be at some site n in equation (1) with probability 1/2i ,
corresponding to the relative frequency of such a site, yet independent of time or history. This
ignores the fact that in the network geometry a long jump of length 2i can be followed only
by another jump of that length or a jump of unit length, and that many intervening steps are
necessary to make a jump of length 2i+1, for instance. Here, at each instant the walker jumps
a distance 2i left or right irrespectively with probability 1/2i+1, and we can write

Pn,t =
∑
n′

Tn,n′Pn′,t−1 (87)

with

Tn,n′ = a − 1

2a

∞∑
i=0

a−i (δn−n′,bi + δn−n′,−bi ), (88)

where a = b = 2. Equations (87)–(88) are identical to the Weierstrass random walk discussed
in [18, 19] for arbitrary 1 < a < b2. There, it was shown that dw = ln(a)/ ln(b), which
leads to the conclusion that dw = 1 in equation (17) for HN4, as has been predicted (with
logarithmic corrections) on the basis of numerical simulations in [11].
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5. Conclusions

We have shown how the powerful tools of the dynamic renormalization group [14] allow us
to dissect this intricate random walk problem on the planar network HN3 with a ‘hidden’
fixed point. Indeed, using a boundary-layer analysis, we unravel the irregular singularity of
the dominant fixed point in a five-dimensional parameter space, resulting in a set of exact,
non-trivial exponents describing super-diffusive transport. Adding just one more link to each
site, we obtain a non-planar network HN4 which possess an even higher degree of symmetry,
yet, for which we can only develop an equation for the generator and an alternative ‘annealed’
treatment which provides results that are consistent with simulations. (We believe that a proper
exploitation of the symmetry in HN4, which eludes us here, will ultimately make exact results
possible.)

Aside from the singular fixed point, HN3 serves further as an instructive example for a
network in which nodes have heterogeneous recurrence properties. The diffusion exponent dw

is larger than the fractal dimension df = 1 of the lattice backbone that the walk is embedded
in, which usually implies recurrence [20, 21]. Here, the near-confined state of the walk
favors recurrences to sites in higher levels of the hierarchy, although the associated first-return
exponent is the same for all sites for the time distribution of any given return.

We should also mention that our results for HN3 can have an alternative interpretation. If
we ignore the one-dimensional lattice backbone and instead consider the network as a graph
without particular embedding, then equation (4) for the diameter, or more specifically the
average growth in neighborhood Sd ∼ d2 with jump distance d found in figure 6, implies that
the fractal dimension for that graph is df = 2. The RG would discover the then-obscured
asymmetry between the backbone and long-range jumps (even when starting with p = 1/3)
and lead to the same analysis. Yet, with all distances now being (on average) measured as
the square root of their separation along the backbone, also the mean-square displacement in
equation (17) needs to be re-evaluated, yielding a diffusion exponent twice its previous value,
dw = 2(2− log2 φ) = 2.61 . . . . In this interpretation, dw > df still applies, but walks are now
sub-diffusive in this metric. Of course, an exponent that is independent of such a metric, like
the purely event-base first return probability, does not change. In turn, the relation between
dw and µ fails, consistent with the fact that the walk can no longer be considered a Lévy
flight.

Finally, our results suggest that many other interesting transport phenomena, such as voter
models, exclusion processes or self-organized critical phenomena can be fruitfully studied on
these networks, which are sufficiently complex for interesting results but sufficiently simple to
be tractable. Especially in light of the tremendous interest in complex dynamics on designed
structures, we hope that these networks can make a useful contribution [7–9, 22].
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